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ABSTRACT
Preference-based learning aims to align robot task objectives with
human values. One of the most common methods to infer human
preferences is by pairwise comparisons of robot task trajectories.
Traditional comparison-based preference labeling systems seldom
support labelers to digest and identify critical differences between
complex trajectories recorded in videos. Our formative study (N =
12) suggests that individuals may overlook non-salient task features
and establish biased preference criteria during their preference elic-
itation process because of partial observations. In addition, they
may experience mental fatigue when given many pairs to com-
pare, causing their label quality to deteriorate. To mitigate these
issues, we propose FARPLS, a Feature-Augmented Robot trajectory
Preference Labeling System. FARPLS highlights potential outliers
in a wide variety of task features that matter to humans and extracts
the corresponding video keyframes for easy review and compar-
ison. It also dynamically adjusts the labeling order according to
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users’ familiarities, difficulties of the trajectory pair, and level of
disagreements. At the same time, the system monitors labelers’
consistency and provides feedback on labeling progress to keep
labelers engaged. A between-subjects study (N = 42, 105 pairs of
robot pick-and-place trajectories per person) shows that FARPLS
can help users establish preference criteria more easily and notice
more relevant details in the presented trajectories than the conven-
tional interface. FARPLS also improves labeling consistency and
engagement, mitigating challenges in preference elicitation without
raising cognitive loads significantly.
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1 INTRODUCTION
Advancement in artificial intelligence (AI) and robotics technologies
brings robots out of laboratories, requiring them to perform daily
tasks for or with humans [47, 54, 56, 58, 67]. To accommodate this
requirement, robot task learning aims at teaching robot tasks such
as prehabilitation [81], companion [64], assembly tasks [61] accord-
ing to user preferences. Traditional robot learning algorithms rely
on delicately handcrafted reward functions to guide robot behav-
ior. However, these delicate reward functions may not accurately
reflect humans’ true values [18] due to generalization errors [57],
task misspecifications [14], etc. The human-robot value alignment
can not only improve robot performances according to humans’
preference but also avoid undesired robot behavior and even safety
issues [6, 68, 83]. Learning a reward model from human preferences
hence emerges [18], which leverages the computationally efficient
and user-friendly pairwise comparison to collect human prefer-
ences [8, 14, 38, 39]. However, this learning process still requires a
substantial number of high-quality human preference inputs, which
inevitably contain subjective uncertainties and incur a huge cogni-
tive labor cost for participants. Reducing the cost and uncertainty
in the human preference data collection process has been one of
the focuses of research on developing robots for human use.

The human preference collection process includes recruiting ad-
equate human labelers to give high-quality preference annotations
to many robot task trajectories. The annotation requires human la-
belers to understand every robot trajectory presented and to specify
which trajectory is better via comparison from their point of view.
Previous studies mainly handled the challenges in human label
collection from two algorithmic directions. One line of research
proposed to work with human data with inconsistent qualities,
trying to incorporate human uncertainty into active reward learn-
ing [38]. The other line of work focused primarily on reducing
the number of human labels needed, for example, by prompting
pairs with a high information gain [5]. These studies, however,
largely overlooked possibilities of improving data quality and hu-
man engagement by assisting in labelers’ sensemaking process
during preference elicitation. Due to the complexity of full episodes
of robot trajectory data, understanding and comparing nuanced
characteristics of robot task processes and performance based on
trajectory-recording videos may be difficult for labelers, especially
those without robotics expertise. Consequently, human labelers
may find the trajectories presented to them arbitrary or misleading
[35], leading to inconsistent labeling and low-quality preference
data. Thus, supporting human labelers’ efficient labeling from novel
interaction and design is an important aspect besides algorithmic
perspectives.

In this work, we argue that the human preference collection sys-
tem for robot task learning should not only focus on the algorithms’
perspective of reducing the cost and uncertainties but also provide
sufficient support to human labelers and improve the data quality
from the source. We aim to address the following three research
questions:

RQ1 How do human labelers compare robot task trajectories, and
what are their challenges and needs when eliciting their
trajectory preferences?

RQ2 How to design a preference collection system that can assist
human labelers in trajectory sensemaking and preference
elicitation?

RQ3 How does the proposed system improve data quality and
human engagement and mitigate the challenges above?

In this paper, we gain an understanding of how human labelers
usually compare two robot task trajectories through semi-structured
interviews in a formative study with 12 participants. We derive
a list of trajectory features humans would consider as preference
elicitation criteria by combining findings from previous literature
and the formative study. We also identify three main challenges that
human labelers face in the preference collection process: difficulty
in forming criteria, overlooking trajectory details, and difficulty
in maintaining focus, which align with data labeling challenges in
other fields (e.g., [30, 41]).

Drawing on the human needs and derived design requirements,
we designed FARPLS, a Feature-Augmented Robot trajectory Pref-
erence Labeling System to address the challenges. We generate a
dataset of robot trajectories of a typical pick-and-place task com-
monly seen in human environments and automatically extracted
the features relevant to human criteria from the trajectories. We
clustered the trajectories based on these features and designed a
prompting strategy to initially present the trajectory pairs that
are varied in features to facilitate criteria formation. FARPLS is a
web-based system that allows human labelers to compare two robot
trajectories pairwise. The system marks feature-based keyframes
in the video for accessible replay and comparison and highlights
features that defer the most from the mean. The system also pro-
vides real-time attention monitoring and feedback to help human
labelers maintain attention and engagement.

We conducted a between-subjects study with 42 participants to
compare the proposed tool with the conventional pairwise compar-
ison interface. Each participant was required to label 105 pairs of
robot pick-and-place trajectories and fill out a post-study question-
naire regarding confidence, cognitive load, and challenges from the
formative study. The results show that FARPLS significantly im-
proves the labeling consistency of human labelers without raising
their cognitive loads. The subjective ratings from the questionnaire
also show that FARPLS is significantly better than the baseline in
terms of establishing comparison criteria and providing sensemak-
ing supports to help labelers notice more nuanced details. Although
the average labeling time of labelers using FARPLS is significantly
longer than those with the baseline system, the participants’ per-
ceived engagement in rewards and boredom in the labeling process
is significantly improved.

The key contributions of our work are as follows:

• We conducted a formative study to understand human label-
ers’ pairwise preference elicitation process and their needs
and challenges.

• We propose a novel trajectory preference labeling system
for robot manipulation tasks, FARPLS, that can help human
labelers give high-quality preference data.

• We conducted a user study to evaluate the effectiveness of
our system and provide design considerations for future data
collection and reward learning systems.
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2 RELATEDWORK
2.1 Human Preference Learning in Robot

Manipulation Tasks
Recent research has pointed out the potential misalignment issue be-
tween human values and robotic objectives. Studies to address this
issue include bidirectional human-robot communication in group
settings [83], evaluation of task accomplishment [6], and disentan-
gled representation learning (DRL) [77]. Particularly, Reinforcement
Learning from Human Preference (RLHP) [1, 14, 49, 50, 84] emerges
as a new trend to offer a flexible and adaptable way to fine-tune
an agent’s behavior based on human preference. RLHP comes with
three key steps: (1) human preference collection, (2) reward learn-
ing, and (3) RL policy optimization. Human preference has been
collected in various ways including absolute rating [13], and rank-
ing (voting [20], pairwise comparison [33, 46, 63], multiple ranking
[9, 10, 60, 89], etc.). Among them, pairwise comparison is the most
widely used due to its advantages in terms of its impacts on model
performance [40, 43] and labeler experience [8, 38].

These existing studies on human preference collection and learn-
ing primarily focus on the trajectory querying strategy, human data
augmentation and representation [14], with little attention paid
to assisting the human preference labeling process, especially on
how human values can be aligned in robotic trajectory ([4, 59]) for
better labeling outcomes. We focus on the robotic trajectory eval-
uation by exploring key features that are deemed valuable in the
robotics community (e.g., [25, 51, 74, 82, 88]). We present a system
that conveys the feature information in a comprehensible manner
to labelers with different levels of prior knowledge, especially those
non-expert labelers. Further, our study identifies the multifaceted
challenges of robotics trajectory preference labeling, thus offering a
chance to optimize the entire crucial procedure and its subsequent
outcomes.

2.2 Data Annotation Tools for Machine
Learning

Labeling tools have been designed to deal with various tasks and
data types, such as text (AILA [17], DUALIST [69]), image (EasyAl-
bum [22], SAPHARI [72]), video (MediaTable [65], VoTT [55]), au-
dios (VIA [28]), and other special use cases like activity label from
the elderly [42]. Three main branches of various techniques include
semi-automatic labeling, active learning, and novel interaction and
visual design [87]. Active learning (e.g., ALVA [45], DUALIST [69],
MI3 [86]) and semi-automatic labeling (e.g., ISSE[11], V-awake[32])
are widely applied to optimize the labeling process and outcomes
from the algorithmic perspective. Novel designs of the interfaces
are essential in supporting efficient labeling, such as a combination
of tabular and bucket list [65], keywords highlighting [17], and
instances clustering [22].

Existing labeling tools are all designed for specific data types,
and they fail to tackle the unique challenges of robotic trajectory
labeling since robotic arm trajectory introduces unique complexities
compared to the data types mentioned above. The trajectory data
are highly non-linear and non-stationary, and the human labelers
may not have a clear understanding of their movements and effects
on the environment. We focus on understanding the trajectory

labeling process and designing a labeling system to facilitate human
labeling of robotic arm trajectories.

2.3 Visualization in Human-Robot Interaction
In the realm of human-robot collaboration, significant efforts have
been directed toward enhancing the visualization and demonstra-
tion of robot tasks, as evidenced by previous research studies (e.g.,
[2, 16, 21]). To provide some more detailed examples: Chandan
et al. [15] develops an intelligent augmented reality (AR) agent
that learns visualization policies aimed at enhancing efficiency and
minimizing distractions for humans; Dragan et al. [26] enhances
the interface for human communication with a virtual robot and
improves the robot’s knowledge representation through the use of
3D isometric visualization, along with providing the robot’s first-
person perspective; Zhu and Veloso [90] targets the challenge of
visual mismatch with video capture, aiming to facilitate the overlay
of visualizations onto video streams and extract the underlying
algorithms utilized; Szafir and Szafir [73] proposed a data-centric
HRI framework and identified visualization design concepts to fa-
cilitate HRI data tasks such as data collection, analysis, and human
decision-making.

Existing interfaces for HRI systems primarily focus on situation
awareness and user control [73, 76]. In these contexts, the inter-
faces focus on how to assist the human-robot interaction and data
analysis process and fail to consider how to improve the human
experience in the labeling process and the data quality. It remains
unclear what specific information is required and how it should be
presented within the context of providing preferences for the ro-
bot arm manipulation tasks. In our work, we will draw inspiration
from previous interface design and data presentation approaches,
incorporating novel insights from a formative study to enhance the
interaction between human labelers and our labeling system for
robot arm trajectories.

3 FORMATIVE STUDY
In this section, we present the formative study and findings to an-
swer RQ1. With the Institutional Review Board (IRB) approval from
the University Research Ethics Committee, we conducted a forma-
tive study to explore how labelers compare robot trajectories and
figure out challenges and needs in traditional pairwise trajectory
preference collection systems.

3.1 Study Design and Procedure
3.1.1 Participants. We recruited twelve participants (6 females and
6 males) aged 19 to 28 (𝑀 = 22.0, 𝑆𝐷 = 2.6) to participate in the
formative study. Their familiarity with the data labeling system (1
for Not familiar at all — 5 for Extremely familiar) ranges from 1 to
3 (𝑀 = 1.9, 𝑆𝐷 = 0.9). Additionally, their familiarity with robotics
(1 for Not familiar at all — 5 for Extremely familiar) ranges from 1
to 4 (𝑀 = 1.9, 𝑆𝐷 = 0.9).

3.1.2 Materials. We built a basic preference labeling system fol-
lowing the interface of Christiano et al. [18] shown on their project
website 1. We generated a pick-and-place dataset based on the Can

1https://openai.com/research/learning-from-human-preferences
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task of robomimic 2, with six cans on the table and four bins on
the side. As shown in Figure 1, six cans are randomized on the left
table, and the robot’s goal is to pick up one of the cans and place it
into the bins on the right. A robot trajectory consists of states and
actions, where the state is a vector of observations at each step (i.e.,
each frame in the video), including the positions and velocities of
all joints of the robot arm and all the objects collected using the
robosuite framework [91]. The states are recorded in each frame,
and the trajectory videos are recorded at 20 frames per second. In
the basic preference labeling system, we utilized the K-means [37]
to perform cluster analysis on the states. This analytical approach
yielded 9 representative samples from each cluster, and the system
randomly prompts the 36 trajectory pairs during the study session.

3.1.3 Procedure. After getting familiar with the pick-and-place
task and the labeling system, the participants labeled 36 pairs of
robot pick-and-place trajectories through the system with their
screen recorded. The total labeling time ranges from 6 to 22minutes
(𝑀 = 15.4, 𝑆𝐷 = 4.0). After the labeling session, we conducted a
retrospective think-aloud study [29] to let the participants recall
their mental process using the screen recording, so that we can
understand the way that they compare the trajectories. Finally, we
conducted semi-structured interviews with the participants to gain
insights into: (a) the challenges they encounter when using the
trajectory comparison system, (b) their criteria and features for
comparing robot trajectories, (c) potential additional challenges
they may face in scenarios involving labeling more pairs, and (d)
their requirements for the trajectory preference labeling system.
The linked document 3 presents the details of the formative study
including demographic questions, procedures, and semi-structured
interview questions.

All the study sessions were fully recorded and transcribed for
thematic analysis. Two researchers independently coded the tran-
scripts and got 22 initial codes under 3 themes, and we discussed the
coding results in our research team meetings to categorize or divide
the initial codes into 9 codes and 19 subcodes and reach a consensus.
Three themes were identified from the thematic analysis: (1) what
are the criteria and corresponding features that labelers care about
in comparing robot trajectories, (2) challenges in the preference
elicitation process, and (3) needs of the trajectory preference label-
ing system. The formative study’s findings are summarized in the
following subsections.

3.2 Criteria and Features
Participants compared two robot task trajectories based on observed
criteria and features in the trajectory videos, which sheds light on
the first part of RQ1: how labelers compare robot trajectories. While
prioritizing these criteria and features is challenging (described in
Section 3.3.1), most participants considered the criteria and corre-
sponding features in a hierarchical order. During our interviews, we
asked participants to suggest additional criteria and features they
would consider for comparing trajectories other than those men-
tioned in the retrospective think-aloud. After that, we presented a
list of criteria and features summarized from other literature, such
as related human values in [83] and evaluation metrics from [25].
2https://robomimic.github.io/docs/v0.2/datasets/robomimic_v0.1.html#info
3https://bit.ly/3Hzil21

Some participants (P01, P03, P05, P12) admitted they would not
consider certain specialized robot arm metrics from [25], finding
them hard to interpret or not important from their perspective. For
example, P01 ignored the arm and the tilting angle and cared more
about whether the object was safe or the task was completed within
an acceptable time, etc.. Similarly, P12 expressed his perspective,
stating that judging the system’s industrial performance might not
be straightforward and could be subjective based on their intuitive
point of view. The way that participants compare the trajectories
can reflect the mismatch between the preferences of common users
(from high-level criteria) and the evaluation metrics in the robotic
specializations (from low-level metrics). Thus, rather than using
features obtained directly frommetrics in the previous literature, we
summarized a set of criteria and corresponding features mentioned
by labelers in our thematic analysis in Table 1.

These features are summarized using generalizable terms that
can be applied to other robot tasks. For example, in this pick-and-
place task, the distance feature can be measured by the highest
distance between the can and the table and the nearest distance
between the can and the table edge, etc.. All participants mentioned
either safety or efficiency as their top priority criteria. The safety
criterion is related to collision, distance, and contact force features.
The efficiency criterion is related to speed, path length, time, and
power usage features. For power usage and contact force, they are not
observable from the trajectory videos, but participants mentioned
that they would consider them if provided with the information.
The participants recognize the task quality criterion less, and it
is related to speed smoothness, trajectory smoothness, orientation,
and grasp position features. However, participants talked about
several features related to the task quality criterion in their think-
aloud, such as smoothness (P01, P03, P04, P05, P08, P12), stableness
(P06, P07, P08), object orientation (P02, P05, P06, P11, P12), gripper
orientation (P06, P09), or grasp approach (P02, P03, P08, P11, P12).
For example, P06 thought lying flat down would be better when
comparing the can orientation of two trajectories.

3.3 Challenges
This subsection answers RQ1 about the challenges during the pref-
erence elicitation process. We categorize participants’ challenges
when comparing robot trajectories into three aspects (Figure 2’s
“Challenges” column).

3.3.1 C1 - Difficulty in forming criteria. Forming criteria for com-
paring robot trajectories is the first step of the preference elicitation
process, which is challenging for participants from the following
two aspects: C1.1 - unclear coverage of criteria features and C1.2
- unclear value distribution of each feature. On the one hand, par-
ticipants (P01-P07, P12) knew too little about the performance of
this robot to build a set of criteria covering all the new situations.
For example, P05 first felt that one of the essential things was that
the robot could not knock the can down, and the robot probably will
not be able to grab it next time. But then he found that the robot
could push the can down and grab it, which made him change the
priority of the feature collision. On the other hand, participants (P02,
P05, P08, P09) found it difficult to estimate the value distribution
of each feature. Thus, they were not sure about the importance of
each feature. For example, many participants found it difficult to

https://robomimic.github.io/docs/v0.2/datasets/robomimic_v0.1.html#info
https://bit.ly/3Hzil21
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Figure 1: The pick-and-place task for preference labeling from the frontview. The robot picks up a can from the left table and
places it on the target table with four bins.

Table 1: Criteria and corresponding features that labelers consider in comparing robot trajectories

Criterion Feature Description

Safety

Collision Contact(s) of cared objects.

Distance The distance(s) between the cared point(s) / line(s) / surface(s).

Contact force The contact force(s) between the cared objects.

Efficiency

Speed The speed(s) of the cared object(s).

Path Length The length(s) of the path(s) of the cared object(s).

Time The total time and time used for cared path(s).

Power Usage The total power consumption.

Task Quality

Speed Smoothness The sum(s) of absolute changes in the speed(s) of the cared object(s).

Trajectory Smoothness The smoothness score(s) of the path(s) of the cared object(s).

Orientation The relative orientation(s) between the gripper(s) and the target(s).

Grasp Position The relative position(s) between the gripper(s) and the grasped target(s).

estimate the value distribution of the feature path length because
they did not know the range of the path length of the gripper or
the can, which affected the priorities of the criterion efficiency.

3.3.2 C2 - Overlooking trajectory details. Participants found it chal-
lenging to pay attention to the details of the trajectories. The chal-
lenge includes two factors: C2.1 - the lack of robotic understandings
and C2.2 - the unobservability of video details. Due to the knowledge
limitation, participants (P01, P02, P03, P06, P09, P12) found figuring
out some robotic details challenging. For example, P03 admitted not
having enough knowledge about the robotic arm to judge its power
usage without knowing which joint is more power-consuming. Be-
sides, observing the non-salient details of the trajectories from the
videos is also not accessible and some features like contact force are
not observable from the trajectory videos (Mentioned by P01-P03,
P05-P07). For example, during retrospective think-aloud, P07 did
not notice a minor collision between the can and the table.

3.3.3 C3 - Difficulty in maintaining focus. The labeling process is
time-consuming, and many participants failed to maintain focus
during the labeling process. The following two factors contribute
to this challenge: C3.1 - mental fatigue and C3.2 - lack of feedback.

Labeling similar trajectories showing the same simple task, par-
ticipants (P01, P02, P04) felt bored and mentally exhausted. For
example, P04 said that “I’m going to be honest with you, this was
incredibly tedious.” Additionally, participants (P03, P05, P07) antic-
ipated knowing their progress, the quality of their labeling, and
improvements in the robot’s performance but did not receive any
feedback, which hindered their ability to stay focused. Many par-
ticipants kept asking how many pairs were left during the labeling
process.

3.4 Derived Design Requirements
The last part of RQ1 is what labelers need for the trajectory pref-
erence labeling system. We derive the design requirements and
features of the trajectory preference labeling system from the coded
challenges and needs. The design requirements and features are in
the “Design Requirements” and “Design Features” columns of Fig-
ure 2, with the relations between columns shown in the connecting
lines.

3.4.1 DR1. Dynamically arranging the labeling order to balance dif-
ficulty. DR1 aims to address the challenges of C1.1 and C2.2, which
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DF2. Feature-based keyframe
extraction from each trajectory

C2 - Overlooking trajectory
details

- C2.1 Lack of robotic
understandings

- C2.2 Unobservability of video
details

C3 - Difficulty in maintaining
focus

- C3.1 Mental fatigue

- C3.2 Lack of feedback

Challenges Design Requirements Design Features

DR1. Dynamically arranging
labeling order to balance
difficulty

DR2. Highlighting noteworthy
trajectory features and
keyframes

DF1.  Trajectory data clustering
based on pre-defined feature
vectors

DF3. Dynamic trajectory pair
prompting based on clustering
results and labeling progress

DF4. Consistency check and
reminders

DF5. Adaptive display of
keyframes and feature outliers

Components

DR3. Realtime attention
monitoring and feedback
provision

C1 - Difficulty in forming
criteria

- C1.1 Unclear coverage of
criterion features

- C1.2 Unclear value distribution
of each feature

Trajectory and
preference dataset

Server component 

User interface
component

Figure 2: This figure demonstrates an overview of our design pipeline: from identified challenges, we establish the design
requirements to address each challenge, then design corresponding features to meet those requirements, and finally, we
integrate those features into concrete components of our labeling system.

involve helping labelers establish a consistent criteria system and
manage the difficulty of labeling. Participants found it challenging
to label similar trajectory pairs without establishing consistent cri-
teria. Therefore, they wanted to label trajectory pairs with distinct
features to establish consistency at the beginning of the labeling
task. To address this challenge, DR1 requires the system to prompt
labelers to label trajectory pairs with distinct features at the ini-
tial stage, followed by trajectory pairs with similar features after
labelers have viewed a more comprehensive range of feature vari-
eties. Furthermore, we propose design features DF1. Trajectory data
clustering based on pre-defined feature vectors and DF3. Dynamic
trajectory pair prompting based on clustering results and labeling
progress to satisfy DR1.

3.4.2 DR2. Highlighting noteworthy trajectory features and
keyframes. The goal of DR2 is to address the challenges of C1.2 and
C2, i.e., help labelers identify features and keyframes of trajecto-
ries. More information about features not easily identified from the
videos, such as power usage and contact force, can help participants
prioritize the features more accurately. Participants also wished for
the ability to jump to specific keyframes to aid in recalling trajec-
tory features and observing details. To fulfill this need, DR2 requires
the system to provide more information, including distributions
of non-salient features and keyframes, to assist labelers in mak-
ing comparisons. We propose design features DF2. Feature-based
keyframe extraction from each trajectory and DF5. Adaptive display
of keyframes and feature outlier distributions to satisfy DR2.

3.4.3 DR3. Real-time attention monitoring and feedback provision.
DR3 is to tackle the challenge C3, which is to help labelers focus

on the labeling task and provide feedback to labelers. Participants
mentioned that they would like to know how much progress they
have made and how well they are doing. Thus, we use participants’
consistency to proxy their attention and fatigue to monitor their
performance and provide feedback. To realize DR3,DF4. Consistency
check and reminders is proposed to monitor labelers’ attention and
provide feedback to participants.

4 FARPLS: SYSTEM DESIGN AND
IMPLEMENTATION

This section provides a detailed illustration of the design and im-
plementation of our FARPLS system, which comprises three main
subsections: the dataset, the server component, and the user inter-
face component (Figure 2’s “Components” columns). These compo-
nents are implemented to fulfill design features as shown in lines
connected to “Design Features” in Figure 2.

4.1 Feature-Augmented Trajectory Dataset
4.1.1 Dataset generation. The pick-and-place task is common in
real life and thus a good starting point for generating a dataset
for preference labeling. We create the simulation environment
using the robosuite framework [91]. The Can task of robomimic
[52] dataset 4 contains 200 successful proficient human demonstra-
tion trajectories (ph), 300 successful multi-human demonstration
trajectories (mh), 3900 machine-generated trajectories (mg) and
100 successful human demonstration trajectories paired with 100
unsuccessful human demonstration trajectories (paired). As the

4https://robomimic.github.io/docs/v0.2/datasets/robomimic_v0.1.html#info

https://robomimic.github.io/docs/v0.2/datasets/robomimic_v0.1.html#info
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Table 2: Definitions for each feature and corresponding keyframes.

Feature Definition Keyframe

Safety

Collision The number of contacts between all the objects, except those between
robot fingers and the target can.

The frames with the collisions (Fig-
ures 3a and 3b)

Distance 1) The minimum distances between the target can and each table edge.
2) The maximum height of the target can from the table surface.

The frames of the can:
1) with the minimum distance to all
table edges (Figure 3d);
2) with the maximum height to the
table (Figure 3c)

Contact force The maximum force exerted by the robot end-effector. N.A.

Efficiency

Speed The average speed of the robot end-effector during the task. N.A.

Path Length 1) The path length of the robot end-effector reaching the target can.
2) The path length of the end-effector grasping the target can.
3) The path length of the can from pick-up to placement.

N.A.

Time
1) The time of the robot end-effector reaching the target can.
2) The time of the end-effector grasping the target can.
3) The time from pick-up to placement.
4) The total time of the manipulation task.

The frames of:
1) the pick-up point (Figure 3e);
2) the release point (Figure 3f).

Power Usage
The sum of the absolute values of the joint rotations as a proxy for power
usage [25], i.e.,
𝑝𝑠𝑒𝑢𝑑𝑜_𝑐𝑜𝑠𝑡 =

∑𝑛
𝑖=1 |𝑞𝑖 |,

where 𝑞𝑖 is the joint rotation of the 𝑖-th joint, and 𝑛 is the number of joints.

N.A.

Task Quality

Speed Smoothness
The sum of the absolute values of the end-effector’s acceleration, i.e.,
𝑠𝑝𝑒𝑒𝑑_𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 =

∑𝑠
𝑗=1

√︃
aj2,

where aj is the 6-dimension acceleration vector of the end-effector at the
𝑗-th state and 𝑠 is the number of states in the trajectory.

N.A.

Trajectory Smoothness
The sum of angles between the displacements between adjacent states,
i.e.,
𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦_𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 =

∑𝑠
𝑗=1 arccos

xj ·xj+1
|xj | |xj+1 | ,

where xj is the 3-dimension end-effector displacement vector between the
( 𝑗 − 1)-th state and the 𝑗-th state.

N.A.

Orientation The maximum relative angle between the can’s and the end-effector’s
orientation. N.A.

Grasp Position The relative position vector with the largest distance between the can’s
and the end-effector’s center during the grasping time. N.A.

robomimic Can task contains only a single can, we randomly simu-
lated the initial positions of the other five cans on the left table as
a new environment. First, we use the actions from the robomimic
dataset to generate successful trajectories for the robot to pick up
and place one of the cans in our environment. Then, we select tra-
jectories where the robot’s end-effector remained confined within
the horizontal spatial constraints of the edges of two tables. Further-
more, we remove human demonstration trajectories longer than 8

seconds, which is the longest duration in machine-generated trajec-
tories. Finally, we get our dataset PickPlaceCans with 636 successful
trajectories, including 200 ph, 117 mh, 99 paired and 220 mg. All
participants in the formative study expressed a preference for the
frontview, i.e., the camera view from the front, over other views.
Therefore, we continued to use the frontview videos to demonstrate
the trajectories.
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(a) Collision with other cans (agentview) (b) Collision with the table (agentview) (c) Highest point to table (frontview)

(d) Nearest point to all edges (birdview) (e) Pick up point (agentview) (f) Release point (agentview)

Figure 3: Examples of five kinds of keyframes, each captured from the best view to observe the corresponding feature.

4.1.2 Feature and keyframe definitions. According to the general
criteria and features that labelers care about in Section 3.2, we
define each feature and feature-based keyframes to be extracted
for each trajectory in PickPlaceCans in Table 2. The detailed for-
mulas for each feature in either time series or scalar values are in
Table 9 of Appendix A. We stack the time series features together
to form the criterion vector series, so that we can represent each
criterion for the trajectory and calculate the similarity between
trajectories for clustering. We calculate the scalar values and ex-
tract keyframes to display the feature distribution on the interface,
which is more intuitive for the labelers to compare the features of
different trajectories.

4.1.3 Criteria-based clustering. We create a criterion vector series
for each criterion with the time series of corresponding features
stacked together. safety𝑖 (𝑡), efficiency𝑖 (𝑡), and task_quality𝑖 (𝑡)
denote the criterion vector series of three criteria, Safety, Efficiency,
and Task Quality, for trajectory 𝑖 at 𝑡-th step (Appendix A). We
compute Dynamic Time Warping (DTW) distance matrices [66]
D𝑠𝑎𝑓 𝑒𝑡𝑦 , D𝑒 𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦 , and D𝑡𝑎𝑠𝑘_𝑞𝑢𝑎𝑙𝑖𝑡𝑦 . Each entry D𝑠𝑎𝑓 𝑒𝑡𝑦 (𝑖, 𝑗)
denotes the DTW distance between the safety vector series of tra-
jectory 𝑖 and 𝑗 . D𝑒 𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝑖, 𝑗) and D𝑡𝑎𝑠𝑘_𝑞𝑢𝑎𝑙𝑖𝑡𝑦 (𝑖, 𝑗) are defined
similarly. Then we obtain the pairwise distance matrix 𝐷 using the

weighted sum of the DTW distance matrices for each criterion to
represent the similarity between trajectories:

D =
𝑤𝑠D𝑠𝑎𝑓 𝑒𝑡𝑦 +𝑤𝑒D𝑒 𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦 +𝑤𝑡D𝑡𝑎𝑠𝑘_𝑞𝑢𝑎𝑙𝑖𝑡𝑦

𝑤𝑠 +𝑤𝑒 +𝑤𝑡
,

We set equal weights for all criteria in this work. In practice, design-
ers can add weights to prioritize the criteria in the similarity calcu-
lation. Then we obtain our feature-augmented, clustered dataset
PickPlaceCans.

4.2 Server Component
4.2.1 Prompting strategy. We use the metrics in Table 3 to calculate
a dynamic ranking score of all trajectory pairs for each labeler.
These metrics are dynamically transformed to rank-based scores
[80] to be averaged to the final ranking score. The larger the ranking
score, the higher the priority of the trajectory pair to be prompted
to the user.

At the initial stage, when the users have not seen all the clusters,
the server chooses all trajectory pairs with none of their clusters
covered and ranks them based on the mean of other metrics to
prompt the user. This initial stage aims to help the user to have
a whole glance at the features from different clusters, reducing
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Table 3: Metrics for dynamic ranking scores

Metric Definition Ranking

Cluster Coverage The portion of prompted trajectories from each cluster. Descending

Combination Familiarity The portion of labeled trajectory pairs from each cluster combination. Descending

Pair Similarity
The distance between the normalized feature vectors (Section 4.1.2) from each tra-
jectory pair. Ascending

Pair Disagreement
The variance [18, 71] of all users’ preference scores (𝑝𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒 ∈ {0, 0.5, 1})
for each trajectory pair. Ascending

Cluster Disagreement
The variance of all users’ preference scores (𝑝𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒 ∈ {0, 0.5, 1}) for all
trajectory pairs in each cluster combination. Ascending

Label Skewness The number of users that labeled each trajectory pair. Descending

the difficulty in forming criteria (C1). After the user has seen all
the clusters, the server will choose the trajectory pairs with the
least label skewness score and rank them based on other metrics to
prompt the user. These metrics balance the labeling difficulty, user
familiarity and disagreements (DR1).

4.2.2 Consistency checking. We arrange a consistency-checking
round every 10 normal prompting rounds, except that the first
consistency-checking round is arranged after prompting 15 unique
trajectory pairs. For each consistency-checking round, we randomly
select one labeled trajectory and prompt it to the labeler to check
the consistency. If the labeler’s preference label is consistent with
the previous preference, we will prompt an encouraging message
to the labeler:

According to our record so far, you have been rather
careful and thorough in the past labeling sessions!
Good job! Take a break if needed and keep on the
good work.

Otherwise, we will prompt a message to remind the labeler to take
a rest and be more careful:

Feeling tired? Take a break if necessary and please
stay attentive in the following sessions.

This consistency-checking mechanism follows DF4. Consistency
check and reminders aiming to fulfill DR3. Real-time attention moni-
toring and feedback provision that deals with challengeC3 - Difficulty
in maintaining focus.

4.3 User Interface Component
We design the interface of FARPLS based on the interface of Chris-
tiano et al. [18] and add our design features related to the user
interface component (DF4 and DF5) The user interface overview
and descriptions for all components are in Figure 4.

4.3.1 Adaptive display of feature-based keyframes (DF5). To facili-
tate the comparison of the feature-based keyframes extracted from
each trajectory, we render keyframe buttons dynamically based on
information sent alongside the keyframe to highlight information
(upon hover), including the keyframe’s start/stop time and an anno-
tated thumbnail. For features wholly unique to each trajectory, such
as “Collisions”, the buttons are labeled as per the collision number

(i.e., “Collision 1”, “Collision 2”, “Collision 3”, etc.), and placed un-
derneath (Figure 5). For features shared between both videos, such
as the “Pick Up Time” or “Highest Point” features, we label buttons
appropriately, and on hover, show the keyframe information for
both videos side-by-side (Figure 6). Upon clicking these buttons,
the system loops the video (if it is a unique keyframe) or two videos
(if it is a shared keyframe) between the start and stop time-frames
to allow users to compare both features directly, thereby helping
labelers to compare noteworthy differences between the two videos.

4.3.2 Feature distribution visualization (DF5). In addition, we visu-
alize the feature distribution via density area charts to provide more
context regarding the whole picture of the feature in the dataset.
For each trajectory we render a density chart of the “outlying” fea-
ture, i.e., the feature with the maximum absolute value of its z-score
[23], i.e., | 𝑥−𝜇𝜎 |. Additionally, the following values were illustrated
and color-coded on the graph with easily identifiable colors for the
overall statistics or to match the corresponding trajectories:

• the mean 𝜇 with the range of plus and minus half std 𝜎 , i.e.,
𝜇 ± 0.5𝜎 , in transparent green area to compare the given
feature values to the average across the dataset,

• the outlying feature value in red line to highlight, and
• the same feature but from the other trajectory of the pair in
blue line for comparison.

The interface typically displays two density charts, each highlight-
ing an outlying feature from one trajectory in the pair. If both
trajectories in the pair share the same outlying feature, the inter-
face will only display one density chart for that feature, with two
red lines indicating the feature values from the trajectory pair.

4.3.3 Progress stepper and feedback (DF4). Finally, we add a progress
stepper (Figure 4) at the bottom of the interface, as well as prompt-
ing windows (Figures 7 and 8) to provide users with feedback re-
garding progress. The progress bar does not explicitly state the
number of completed trajectory pairs to prevent overwhelming the
labelers with a large number of pairs. Instead, it updates to the next
step before each attention-checking pair and provides feedback
messages from the server to positively reinforce the user’s progress.
These components fulfill DR3 of real-time attention monitoring and
feedback provision from the user interface.
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Progress Stepper

Feature Value 
Distribution

Keyframe 
Buttons

Figure 4: The primary component of the user interface is two juxtaposed trajectory videos. Labelers can play the videos
simultaneously using the play button in the middle or individually using separate controls. The labeler can click one button on
the top to indicate a preference. Auxiliary features include looping videos with keyframe buttons (Section 4.3.1, Figures 5 and 6),
outlying feature value distribution (Section 4.3.2), and a progress stepper with messages prompting at each step (Section 4.3.3,
Figures 7 and 8).

Figure 5: Collision keyframe preview when hovering on the
buttons.

Figure 6: Common keyframe preview when hovering on the
buttons.



FARPLS: Feature-Augmented Robot Trajectory Preference Labeling System IUI ’24, March 18–21, 2024, Greenville, SC, USA

Figure 7: Encouraging messages.

Figure 8: Rest reminder messages.

5 EVALUATION
We conducted a between-subjects study to evaluate FARPLS’s ef-
fectiveness in improving the quality of preference labels with the
Institutional Review Board (IRB) approval from the University Re-
search Ethics Committee.

5.1 Participants
Forty-two participants (21 identified themselves as female, 18 iden-
tified themselves as male, and 2 identified themselves as non-binary,
in the age range of 19 to 40 with a mean of 23.4 and a standard
deviation of 3.2), who did not participate in the formative study,
were recruited in the user study. Their familiarity with the data
labeling system (1 for Not familiar at all — 5 for Extremely familiar)
ranges from 1 to 4 with a mean of 2.2 and a standard deviation of
0.9. Additionally, their familiarity with robotics (1 for Not familiar
at all — 5 for Extremely familiar) ranges from 1 to 4 with a mean of
2.0 and a standard deviation of 0.8.

5.2 Task and Condition
We deployed two online trajectory preference labeling systems
to a web server for the user study: a) the baseline system with a
conventional interface with two videos side-by-side and the stepper
only (Figure 9a), and b) our proposed system FARPLS with features
and keyframes shown as auxiliary information additional to the two
videos and the stepper (Figure 9b). The method of between-subjects
design was used, and we randomly split the participants into two
groups, with baseline group (N = 21) and FARPLS group (N = 21).

To prepare data with similar feature distributions with PickPlace-
Cans, we calculated sample weights based on the feature values
extracted from each trajectory and stratified sampled 30 represen-
tative samples (i.e., 30 × 29/2 = 435 unique trajectory pairs) from

PickPlaceCans with the sample weights for the user study. Our com-
parative study utilizes these 30 sampled trajectories to compare the
performance of the two systems. We invited each participant to
label 115 pairs (with 105 unique pairs from the sampled trajecto-
ries and 10 pairs for consistency checking) of robot pick-and-place
trajectories through the system. In the baseline condition, the sys-
tem randomly assigns 105 unique pairs to each participant, at the
same time, making sure that at least 5 participants label each pair.
In the FARPLS condition, FARPLS first clusters the 30 trajectories
using the criterion vector series and dynamically prompts the tra-
jectory pairs according to the strategy mentioned in Section 4.2.1,
which balances different ranking metrics when guaranteeing label
skewness.

Labeling 105 unique pairs consists of 10 steps, each step con-
taining 10 (the number is 15 for the first step) unique pairs and 1
consistency checking pair. At the end of each step, both systems
randomly select a consistency-checking pair from the labeled pairs
and prompt it to the user. We did not tell the participants the num-
bers of unique pairs and consistency-checking pairs. Still, both
systems can show the status (incomplete/active/completed) of 10
steps in the stepper to the participants and prompt a stop message
when all pairs are labeled.

5.3 Procedure
First, the host of the study session provided instructions on the
robot task, the labeling system for the corresponding group, and
the labeling task and ensured that participants were clear about
everything. Then, the participants were asked to label 115 pairs
of robot pick-and-place trajectories through the system. Finally,
we conducted a post-study survey with the 7-point Likert scale
and open-ended interview questions. The FARPLS group was ad-
ministered additional 7-point Likert scale questions regarding the
auxiliary features in FARPLS, while distinct open-ended interview
questions were posed to the two groups. The whole study session
took about 90 to 120 minutes, varying depending on the learning,
loading, and labeling speed.

5.4 Evaluation Measurement
We collected quantitative measures by the collected preference data,
logging participant interactions, and Likert scale questions. We also
conducted a semi-structured interview to collect participants’ other
feedback. Table 4 lists the evaluation metrics used in our study.
The objective metrics include consistency and labeling time. The
subjective metrics include cognitive load, confidence and challenges
in Section 3.3. For the FARPLS group, we further explored their
perspectives on the auxiliary information provided by the system
and their perceptions of how well the design goals were fulfilled
(Table 5).

Additionally, we conducted a semi-structured interview to col-
lect participants’ other feedback. For both groups, we asked about
participants’ criteria with features and priorities and their com-
ments and suggestions on the system. For the baseline group, we
also discussed the features and keyframes in Table 1 at the end. For
the FARPLS group, we asked more about their opinions on each
design requirement (Section 3.4).
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Table 4: Evaluation Metrics for the User Study, including Objective and Subjective Metrics.

Objective Metrics Definitions

Consistency The percentage of consistent labels in the 10 consistency checking pairs, taking interval values in
{0, 0.1, . . . , 0.9, 1}

Labeling Time The total labeling time (loading time eliminated), which takes continuous values in [0,∞)

Subjective Metrics 7-Likert Scale Questions

General Questions

Cognitive Load How mentally challenging was it for you to compare and specify your preference over the video pairs
in general? (1 - “Not mentally challenging at all” to 7 - “Extremely mental challenging”)

Confidence How confident were you about your labels in general? (1 - “Not confident at all” to 7 - “Extremely
confident”)

Questions About Three Challenges

Please rate how much you agree with the following statements on a scale of 1 to 7, where 1 is “strongly disagree” and 7 is “strongly agree”:

C1 Comparison Criteria

C1 [criteria establishment] I can easily establish comparison criteria in general.

C1-1 [criteria coverage] My comparison criteria can cover all the new situations in the later videos.

C1-2 [feature coverage] I am clear about the set of features I rely on to decide the priority of each
criterion.

C1-3 [feature distribution] I am clear about the scope of each feature required to determine the
priority of each criterion.

C2 Trajectory Details

C2 [detail overlooking] I feel that I may overlook some important details when viewing and compar-
ing two trajectories.

C2-1 [robotic knowledge] My knowledge of this robot arm task affects the kind of details I pay
attention to.

C2-2 [feature support] The system provides enough support for me to identify features that may be
important to this robot arm task in practice.

C2-3 [comparison support] The system provides enough support for me to compare the differences
between the two videos.

C3 User Experience

C3-1 The preference labeling process is [easy].

C3-2 The preference labeling process is [boring].

C3-2 I receive [encouragement] in the preference labeling process.

C3-4 I receive [feedback] on my performance in the preference labeling process.

C3-5 I find the preference labeling process [rewarding].

6 RESULTS
To answer RQ3, we comprehensively analyze all the metrics for
each group. We first conduct significant tests for each metric in two-
sided, and then for significant metrics, we conduct additional one-
sided tests. We also answer how well FARPLS solves the challenges
by each design requirement and the participants’ feedback on the
design requirements. We further highlight the participants’ most
insightful comments and suggestions.

6.1 Consistency
The FARPLS group has a significantly higher consistency score
than the baseline group according to the Mann-Whitney U test [53],

𝑈 = 321.5, 𝑝 = 0.0046** < 0.01. The participants in the baseline
group have an average consistency score of 0.79 (𝑆𝐷 = 0.15), and
the participants in the FARPLS group have an average consistency
score of 0.89 (𝑆𝐷 = 0.16). Figure 10a shows the distribution of
consistency scores in boxplots for both groups. The result indicates
that participants are more consistent with the help of FARPLS.

6.2 Labeling Time
6.2.1 Total Labeling Time. Participants spend significantly more
time labeling with FARPLS than with the baseline system accord-
ing to Welch’s t-test, 𝑡 (36.18) = 3.127, 𝑝 = 0.0017** < 0.01,
95% 𝐶𝐼 [242.36,∞]. On average, the participant in the baseline
group spent 1350s (𝑆𝐷 = 448) labeling all the trajectories, while
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Table 5: Subjective Questions for FARPLS Group Only

Metrics 7-Likert Scale Questions

Please rate how much you agree with the following statements about the auxiliary information provided by the system on a scale of 1 to
7, where 1 is “strongly disagree” and 7 is “strongly agree”:

Auxiliary Information

AX1 The auxiliary information provided by the system is [informative].

AX2 The auxiliary information provided by the system is [relevant].

AX3 The auxiliary information provided by the system is helpful for establishing preference [criteria].

AX4 The auxiliary information provided by the system prevents me from observing more [details] in
the videos.

AX5 The auxiliary information provided by the system is helpful for [comparing] the differences
between the two videos.

AX6 The auxiliary information provided by the system is [overwhelming].

AX7 The auxiliary information provided by the system is [distracting].

We will present you with three designs of this system. Please rate how helpful each design is in a particular aspect on a scale of 1 to 7,
where 1 is “not at all helpful” and 7 is “very helpful”:

1. We group the trajectories according to a set of features illustrated in Table 1. Subsequently, we present the trajectories with greater
variations in these features to you initially.

DR1 Prompting Strategy

DR1C1-1 [initial familiarity] How helpful is this design in facilitating familiarity with diverse
situations and establishing criteria for comparison?

DR1C2-2 [detail aware] How helpful is this design in improving your perception of the details of the
trajectory, regardless of your level of robotics expertise?

2. This system presents the distributions of representative trajectory features and keyframes from a particular view.

DR2 Feature and Keyframe

DR2C1-2 [criteria priority] How helpful is this design in assisting your comprehension of each
feature’s range to determine the priority of your criteria?

DR2C2 [sense making] How helpful is this design in enhancing your understanding of this robot
task and gaining access to more information?

3. This system offers a real-time attention-monitoring feature. If you label inconsistently, the system will prompt you to take a break. On
the other hand, if you label consistently, it will motivate you to continue.

DR3 Attention Monitoring and
Feedback

DR3C3-2 How helpful is this design in [decreasing the boredom] of labeling preferences?

DR3C3-5 How helpful is this design in [increasing the reward] of the preference labeling process?

the participant in the FARPLS group spent 1877s (𝑆𝐷 = 628). Fig-
ure 10b shows the distribution of total labeling time spent by two
groups of participants in boxplots. The result is within expectations,
since participants in the FARPLS group need to spend more time
observing the auxiliary information in FARPLS.

6.2.2 Learning Curve. We plot a learning curve to analyze how the
participants’ labeling time for each trajectory pair changes during
the experiment in Figure 11. The fitted smoothing lines (via Lo-
cally Weighted Scatterplot Smoothing (LOESS) method [19]) show
the trend of the average labeling time per pair of participants. The
average labeling time per pair of participants decreases as the exper-
iment progresses, which indicates that the participants are getting
more familiar with the labeling task and their comparison criteria. A
sharper decreasing trend in the FARPLS group than in the baseline
group also indicates that the participants in the FARPLS group are
learning faster than the participants in the baseline group. There

is also a slight increase at the end of the FARPLS group’s learning
curve, possibly due to the prompted pairs’ increased difficulty.

6.3 Cognitive Load and Confidence
Figure 12 shows the distributions of the ratings of two subjective
metrics, Cognitive Load and Confidence.

6.3.1 Cognitive Load. There is no significant difference in the cog-
nitive load scores between the two groups according to the Mann-
Whitney U test, 𝑈 = 190.0, 𝑝 = 0.4375 > 0.05. The participants
in the baseline group have an average cognitive load score of 3.28
(𝑆𝐷 = 1.42), and the participants in the FARPLS group have an
average cognitive load score of 3.00 (𝑆𝐷 = 1.64). This result indi-
cates that the additional design features in FARPLS do not affect
the participants’ cognitive load.
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(a) Baseline System (b) FARPLS

Figure 9: System interfaces of two evaluation conditions: Baseline System and FARPLS. The Baseline System features two
side-by-side videos and a stepped progress bar, while FARPLS incorporates additional information, including keyframes, feature
distributions, and feedback messages.
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Figure 10: The distributions of two subjective metrics Consistency and Total Time in boxplots comparing two system conditions.

6.3.2 Confidence. There is no significant difference in the con-
fidence scores between the two groups according to the Mann-
Whitney U test, 𝑈 = 166.0, 𝑝 = 0.2027 > 0.05. The participants
in the baseline group have an average confidence score of 4.81
(𝑆𝐷 = 1.40), and the participants in the FARPLS group have an
average confidence score of 5.29 (𝑆𝐷 = 1.16). The participants are
generally confident in their labeling according to the means (> 4)
and the plots in Figure 12. However, the baseline group’s Consis-
tency metric is significantly lower than the FARPLS group. This

finding suggests that participants may have overconfidence in their
self-assessments of the Confidence metric.

6.4 Challenges and Design Requirements
Table 6 shows the statistics for metrics and Figures 13 to 15 show
the distributions of the metrics.

6.4.1 C1 - Difficulty in forming criteria. Figure 13 shows the dis-
tributions of metrics about C1 - Difficulty in forming criteria in
boxplots comparing two system conditions. According to the sta-
tistics in Table 6, we have the following results:
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Figure 11: Learning curve showing the participants’ average labeling time per pair.
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Figure 12: The distributions of Cognitive Load and Confidence in boxplots comparing two system conditions.

C1 [criteria establishment]. This metric in FARPLS group is sig-
nificantly higher than that in the baseline group according to the
Mann-Whitney U test. Participants in the FARPLS group find it
significantly easier to establish criteria in general compared to the
baseline group.

C1-1 [criteria coverage]. This metric in FARPLS group is signif-
icantly higher than that in the baseline group according to the
Mann-Whitney U test. Participants in the FARPLS group reckon
their criteria can cover more new situations in the later videos than
those in the baseline group.

C1-2 [feature coverage]. This metric has no significant difference
between the two groups according to the Mann-Whitney U test.
The results show that participants in both groups reckon they are
clear about the features to decide the priority of each criterion.

C1-3 [feature distribution]. This metric has no significant differ-
ence between the two groups according to the Mann-Whitney U
test. The results show that participants in both groups reckon they
are clear about the scope of features to determine the priority of
each criterion.
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Table 6: Challenge Metrics Statistics and Mann-Whitney U Test Results

Metrics Baseline FARPLS Mann-Whitney U Test
(FARPLSv.s. Baseline)

mean std mean std U-value alt. hypo. p-value

C1 [criteria establishment] 4.67 1.59 5.62 0.86 295.5 greater 0.0246*
C1-1 [criteria coverage] 3.86 1.77 5.05 1.20 307.5 greater 0.0128*
C1-2 [feature coverage] 4.81 1.54 5.57 1.03 281.0 two-sided 0.1173
C1-3 [feature distribution] 4.67 1.46 5.43 0.98 275.0 two-sided 0.1533

C2 [detail overlooking] 4.00 1.70 3.90 1.41 214.5 two-sided 0.8870
C2-1 [robotic knowledge] 3.81 1.91 3.43 1.80 193.0 two-sided 0.4901
C2-2 [feature support] 4.10 1.73 5.76 0.94 349.0 greater 0.0005***
C2-3 [comparison support] 4.76 1.76 5.86 1.20 306.5 greater 0.0125*

C3-1 [easy] 4.71 1.95 5.33 1.43 256.0 two-sided 0.3643
C3-2 [boring] 4.95 1.63 4.19 1.36 152.5 less 0.0419*
C3-3 [encouragement] 3.62 1.60 4.57 1.54 288.0 greater 0.0424*
C3-4 [feedback] 2.95 1.56 4.81 2.02 334.0 greater 0.0019**
C3-5 [rewarding] 3.48 1.83 4.71 1.23 312.0 greater 0.0101*
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Figure 13: The distributions of metrics about C1 (Comparison Criteria) in boxplots comparing two system conditions.

Summary. The significant results in C1 and C1-1 (Table 6) show
that FARPLS can successfully mitigate the challenges in forming
criteria.

6.4.2 C2 - Overlooking trajectory details. Figure 14 shows the dis-
tributions of metrics about C2 - Overlooking trajectory details in
boxplots comparing two system conditions. According to the sta-
tistics in Table 6, we have the following results:

C2 [detail overlooking]. This metric has no significant difference
between the two groups according to the Mann-Whitney U test.
The neutral results of the metric C2 in both groups (both means
∼ 4.00 and both medians = 4) indicate that people do not know
whether they overlook trajectory details.

C2-1 [robotic knowledge]. This metric has no significant differ-
ence between the two groups according to the Mann-Whitney U
test. Considering that the two groups’ mean metric scores for C2-1
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Figure 14: The distributions of metrics about C2 (Trajectory Details) in boxplots comparing two system conditions.

(3.81 and 3.43) are < 4.00, we can infer that although with large
disagreements (𝑆𝐷 = 1.91 and = 1.80), many participants in both
groups think their knowledge of robotics does not affect their la-
beling process.

C2-2 [feature support]. This metric in FARPLS group is signif-
icantly higher than that in the baseline group according to the
Mann-Whitney U test, 𝑈 = 349.0, 𝑝 = 0.0005*** < 0.001. Partic-
ipants in the FARPLS group feel significantly more support than
those in the baseline group to identify features that may be impor-
tant to the robot arm task in practice.

C2-3 [comparison support]. This metric in FARPLS group is sig-
nificantly higher than that in the baseline group according to the
Mann-Whitney U test. Participants in the FARPLS group feel signif-
icantly more support than those in the baseline group to compare
the differences between the two videos.

Summary. The significant improvements in C2-2 and C2-3 (Ta-
ble 6) show that FARPLS can successfully assist labelers in identify-
ing more features and easily eliciting their preferences.

6.4.3 C3 - Difficulty in maintaining focus. Figure 15 shows the
distributions of metrics about C3 - Difficulty in maintaining focus
in boxplots comparing two system conditions. According to the
statistics in Table 6, we have the following results:

C3-1 [easy]. This metric has no significant difference between
the two groups according to the Mann-Whitney U test. The scores
of C3-1 are high in means (4.71 and 5.33 > 4.00) and medians (5
and 6 > 4) for both groups. The results show that participants in
both groups reckon the labeling task easy.

C3-2 [boring]. This metric in FARPLS group is significantly lower
than that in the baseline group according to the Mann-Whitney
U test. Participants in the baseline group find the labeling process
more boring than those in the FARPLS group.

C3-3 [encouragement]. This metric in FARPLS group is signif-
icantly higher than that in the baseline group according to the
Mann-Whitney U test. Participants in the FARPLS group reckon
they receive more encouragement in the labeling task than those
in the baseline group.

C3-4 [feedback]. This metric in FARPLS group is significantly
higher than that in the baseline group according to the Mann-
Whitney U test. Participants in the FARPLS group think they receive
more feedback on their labeling performance than those in the
baseline group.

C3-5 [rewarding]. This metric in FARPLS group is significantly
higher than that in the baseline group according to the Mann-
Whitney U test. Participants in the FARPLS group feel the labeling
process more rewarding than those in the baseline group.

Summary. The significant improvements (Table 6) in C3-2, C3-3,
C3-4 and C3-5 show that the participants in the FARPLS group find
the labeling process less tedious and more engaging than those in
the baseline group. The insignificant result of C3-1 [easy] indicates
that the participants think the labeling task is easy, resulting in their
confidence in their criteria (aligned with the Confidence metric) and
their belief in the comprehensiveness of their feature criteria and
their familiarity with the distribution of features (aligned with the
metrics C1-2 [feature coverage] and C1-3 [feature distribution]). As
a result, participants do not think their robotic knowledge affects
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Figure 15: The distributions of metrics about C3 (User Experience) in boxplots comparing two system conditions.

the details they pay attention to (aligned with the metric C2-1
[robotic knowledge]). Therefore, the metrics C3-1, C1-2, C1-3, and
C2-1 are logically aligned with Confidence. We will discuss the
implications of this finding in the discussion section.

6.4.4 Design requirements. The additional metrics for the FARPLS
group are for participants to rate the auxiliary information and
the helpfulness of design requirements of FARPLS, reported in
Table 7 and Figure 16. As we can see from the results (relevant
means and medians comparing with 4), the participants find the
auxiliary information informative, relevant, and helpful for estab-
lishing comparison criteria. Moreover, the auxiliary information
does not prevent the participants from observing more details in the
videos and is helpful for them to compare the trajectories, neither
overwhelming nor distracting.

The rest questions are designed to check whether the design re-
quirements of FARPLS solve the challenges mentioned in Section 3.
We dynamically arranged the order to balance labeling difficulty
in the case of DR1. Our prompting strategy during the initial stage
significantly facilitated participants in quickly gaining familiarity
with the labeling task and establishing their comparison criteria
(DR1C1-1,𝑀 = 6.24). Furthermore, it enabled them to comprehend
the intricate details of the trajectories (DR1C2-2, 𝑀 = 6.24). For
DR2, the participants find the design helpful for them to understand
the feature value distributions to determine the priorities (DR2C1-2,
𝑀 = 5.62) and access more information to make sense of the robot
task (DR2C2,𝑀 = 5.90). As shown in the metric results of DR3, the
participants find the design moderately helpful in decreasing the
boredom (DR3C3-2,𝑀 = 5.05) and increasing the reward (DR3C3-5,

𝑀 = 5.05). Therefore, participants find all the design requirements
of FARPLS helpful for the corresponding challenges connected to
the DRs in Figure 2.

6.5 Semi-structured Interview
6.5.1 Features in participants’ comparison criteria. We compared
the number of features noticed by participants from two groups.
We clarified subtle distinctions in our feature categorization to
the participants and tallied their explicit indications of whether
they noticed each of them. “Power Usage”, “Contact Force”, and
“Orientation” are the three least noticed features with 18, 14, and
8 participants out of 21 neglecting them, respectively, as is shown
in Table 8. In the FARPLS group, we integrated all 11 features into
the system. Participants reported that they noticed these features
and were free to assign different priorities to each. Thus, they take
more time observing auxiliary information than the baseline group,
which can be a reason for the significantly increased total labeling
time.

According to the participants, the improved system provided
features in advance and thus broadened their perspectives and
encouraged further elicitation. It also revealed subtle differences
challenging or impossible to discern with the naked eye, aligned
with C2 - Overlooking trajectory details. Though participants tended
to set lower priority to some of the features, these features were
crucial, especially in cases where their primary criteria exhibited
limited variation and participants needed to turn to more features
for guidance. For example, one user stated that he would rely on
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Table 7: Statistics of additional metrics about auxiliary information and design requirements of the FARPLS group.

AX1 AX2 AX3 AX4 AX5 AX6 AX7
[informative] [relevant] [criteria] [details] [comparing] [overwhelming] [distracting]

mean 5.95 6.14 5.57 3.86 6.05 3.10 2.76
std 1.12 0.73 1.40 2.13 1.12 1.41 1.30

DR1 Prompting Strategy DR2 Feature and Keyframe DR3 Attention Monitoring and Feedback

DR1C1-1 DR1C2-2 DR2C1-2 DR2C2 DR3C3-2 DR3C3-5

mean 6.24 6.24 5.62 5.90 5.05 5.05
std 0.70 0.77 1.50 0.94 1.47 1.53
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Figure 16: Distributions of additional metrics about auxiliary information and design requirements of the FARPLS group in
boxplots.

lower-priority features like “Power Usage” when the primary crite-
ria (e.g., “Collision”, “Trajectory Smoothness”) cannot distinguish
the trajectories.

6.5.2 Other comments and suggestions. Participants provided vari-
ous comments and suggestions regarding the system and the label-
ing process.

In terms of the labeling order and process, participants encoun-
tered certain pairs that were challenging to compare, possibly those
where User Familiarity, Pair disagreement or Cluster Disagreement
dominated other metrics in Table 3, and some easier pairs, possibly
those where Cluster Coverage or Pair Similarity dominated other
metrics in Table 3. Trajectory pairs with different difficulty levels
are interspersed in the labeling process. Therefore, the participants
found the labeling process’s workload more manageable and ex-
perienced increased engagement in the task. Several participants
mentioned that they would feel more rewarded if they could see

the improvements in the robot’s performance during the labeling
process.

From the features and keyframes perspective, some participants
recommended that the system should always highlight unobserv-
able features and provide more detailed explanations or definitions
of the trajectory features, particularly for those unfamiliar with the
robotic task. Moreover, participants wished to view the complete
list of feature distributions and keyframes and select the ones to
display and compare. Some participants suggested that the system
could provide more detailed written descriptions instead of let-
ting the host explain the trajectory features orally. One participant
suggested that the system should provide a way to quantify the col-
lision’s severity since some collisions do not affect the safety of the
object and the robot; in contrast, some collisions may cause severe
damage. A possible way is to use the collision force to quantify the
severity of each collision.
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Table 8: Number of baseline group participants overlooking
each feature.

Feature Number of Participants

Collision 0
Distance 2
Contact Force 14

Speed 7
Path Length 6
Time 6
Power Usage 18

Speed Smoothness 7
Trajectory Smoothness 2
Orientation 8
Grasp Position 7

From the workload and engagement perspective, although more
engaged using FARPLS, many participants still feel overwhelmed
by the number of trajectory pairs for the labeling workload and
hope to have fewer pairs to label. One insightful suggestion is
leveraging gamification tomake the labeling process more engaging
by providing more variety in the task scenario presented.

7 DISCUSSION
Our user study shows that the participants in the FARPLS condition
have significantly higher labeling consistency than those in the
baseline condition. Although the total labeling time of the FARPLS
group is significantly longer than that of the baseline group, the
participants in the FARPLS group find it significantly easier to form
comparison criteria and maintain engagement than those in the
baseline group. They also consider FARPLS helpful and easy to use.
According to participant ratings, our proposed design requirements
of FARPLS help tackle the corresponding challenges identified in the
formative study. In the following subsections, we discuss the poten-
tial research implications derived from the participants’ feedback,
the room for improvement of each component, the generalizability
of the proposed tool FARPLS, and the possible limitations of this
work.

7.1 Implications for Future Research
7.1.1 Support for sense-making and preference elicitation. Our data-
set PickPlaceCans augments conventional robot task data with
descriptive statistics of a wide variety of trajectory features and
keyframes of critical moments in task videos. We leverage such
information to cluster robot trajectories, prompt labeling arrange-
ment, and facilitate comparison on the FARPLS interface. The
results (Sections 6.4.1, 6.4.2 and 6.4.4) show that these features
and keyframes can help users better understand complex trajec-
tories, establish preference criteria, and make decisions. Through
the keyframes, users can visually identify the differences in a spe-
cific feature between the trajectories through a quick glance at
the related video segment. For example, users can compare the
height at which the robot drop the object by the corresponding

juxtaposed frames from the two videos. With the plots of feature
value distributions, users can determine the priority of the features.

Due to the space limitation, in our current design, FARPLS
chooses to present the distribution of a feature on the labeling
interface if its value in any of the given two trajectories is consid-
ered an outlier. The assumption is that such features are distinctive
and worthy of attention. Another possible way to select features
for display is to let users specify features of interest, as some partic-
ipants mentioned in the interview. However, users may not know
what features matter to them, especially at the beginning, or their
judgment is biased. In other words, both the adaptive and the adapt-
able approaches have their own advantages and disadvantages.
Future work may further explore the usability and user-friendliness
of a mixed-initiative approach [12], ensuring user agency while
trying to mitigate individual biases. Overall, these features serve
as an abstraction of the trajectories to boost comprehension. We
only employ familiar basic charts and keyframes to illustrate the
features in this work. Future research can explore alternative means
to present such auxiliary information on the side or directly overlay
on top of a task trajectory. For example, a potential direction can
be utilizing situated visualization in augmented reality (AR) [15]
for preference elicitation of trajectories.

7.1.2 Overconfidence in self-assessments. Our study finds that the
metrics related to participants’ self-assessments (C3-1 [easy], Con-
fidence, C1-2 [feature coverage], C1-3 [feature distribution], and
C2-1 [robotic knowledge]) did not show significant differences be-
tween the FARPLS and the baseline groups. However, we observe a
significant improvement in the Consistency metric of the FARPLS
group. Moreover, during the interviews, many baseline group par-
ticipants admitted that they failed to notice some important features
(Section 6.5.1). These results suggest that the participants may be
overconfident in their preference labels, known as Dunning-Kruger
effect [44], even though most claimed to be unfamiliar with robotics.
This finding aligns with previous studies [27, 31] that have identi-
fied the overconfidence bias in crowdsourcing tasks. In such tasks,
labelers with low ability tend to overestimate their performance,
leading to insufficient observations and inconsistent labels. This
insight highlights the importance of assisting labelers in calibrating
their confidence. Possible methods include but are not limited to
training the non-expert labelers [75] to improve their expertise,
increase labelers’ awareness of cognitive biases by providing trial-
by-trial feedback [36], and introducing labeler collaboration in the
preference elicitation process [78] Future research can investigate
the efficacy of various confidence calibration mechanisms and the
consequent effect on label quality.

7.1.3 Design of prompting mechanisms. FARPLS tries to balance
the model’s information collection and the user’s experience by
considering the similarities between trajectories, disagreements
among labelers, and individual familiarity with the trajectory pair
when dynamically adjusting the comparison order. The results
from the FARPLS group suggest that presenting trajectory pairs that
covermore distinct cases at the initial stage can improve their ability
to observe a wide variety of details and establish relatively reliable
criteria (Section 6.4.4). Additionally, according to the interview, the
FARPLS’s adaptive prompting order helps users stay engaged in
the task and promotes a positive user experience. Nevertheless,
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how each component (e.g., pair similarity, user familiarity, and
disagreements) impacts the performance and experience is yet to be
assessed. Future work can conduct ablation studies to determine the
effect of individual components, comparing the effectiveness of the
robot reward models trained on the labeling results. Furthermore,
future studies can experiment with other factors andmechanisms to
achieve an optimal balance between the model’s uncertainty, users’
experience, and labeling quality. For example, inspired by active
learning [3, 38, 71], researchers could add a model informative
dimension to determine the priority of comparative pairs. They
may also incorporate annotation curricula [48] or gamification
[70] in the labeling process to reduce labelers’ learning curve and
improve their engagement.

7.2 Generalizability of FARPLS
Our study demonstrates the effectiveness of our pairwise preference
labeling system, FARPLS, in improving the consistency of human
feedback in the pick-and-place task. This subsection discusses the
generalizability of FARPLS.

7.2.1 Generalizing to other tasks. FARPLS can also be generalized
to other robot arm manipulation tasks besides the pick-and-place
task. In the formative study, we interviewed the participants about
the issues they may encounter in labeling other robot tasks. They
reflected that the three challenges identified in Section 3.3 exist
regardless of the tasks. They further commented that the criteria
and trajectory features of interests are likely to be similar across
different robot armmanipulation tasks, but the priority of individual
criteria may vary in different scenarios. That is to say, the criteria,
features, challenges, and design requirements we summarized from
the formative study are not limited to the pick-and-place task. To
tailor our design to other tasks, it is only necessary to redefine
the list and the formulas of trajectory features and extract the
corresponding keyframes according to the specific requirements
of the new task. For example, the Distance feature can be defined
as the distance of the pouring point to the cup in the pouring task.
Future work can further investigate the effectiveness of FARPLS
adapting to other robot arm manipulation tasks. For example, how
well FARPLS could be adapted to more complex tasks involving
multiple objects, multiple parties, or multiple steps, such as the
kitchen tasks in [34].

7.2.2 Generalizing to other feedback types. Since the highlights of
our design for FARPLS are the augmentation of the features and
prompting strategies, it is flexible enough to accommodate various
types of human feedback, including but not limited to pairwise
comparison [33, 46, 63], multiple ranking [9, 10, 60, 89], rating [13],
etc., as long as the input data are consistent. The dataset PickPlace-
Cans and the ranking metrics in Table 3 are prepared for individual
trajectories on the server side, regardless of how the trajectories are
presented and annotated on the client side. To generalize FARPLS to
other feedback types, we only need to adjust the user interface and
the prompting strategies accordingly. For example, we can mod-
ify the user interface for rating feedback to display one trajectory
video at a time with a rating scale. The prompting strategies can be
revised to ask users to rate the trajectories with the most distinct
features at the initial stage and then proceed to the trajectories with

less familiarity and more disagreements. Future work can further
investigate the effectiveness of FARPLS adapting to other feedback
types for learning approaches requiring different kinds of human
input such as [79].

7.3 Limitations and Future Work
Our study has several limitations. First, similar to most existing
research on robot-human alignment [14, 62], our study is limited
by the representativeness of the participants and data. Although
we recruited participants from different backgrounds, including
students, researchers, and engineers, we did not have large samples
of each group of stakeholders. Also, we did not cover all age groups
and all domain expertise groups in robotics or data labeling sys-
tems. Future works can compare the performance and experiences
of different user groups to gain further insights. Second, because it
can be hard to externalize one’s internal thinking and reasoning,
the criteria and features we summarized from the formative study
may not be a complete and fully accurate representation of human
values. We may introduce additional sensors [85] or design algo-
rithms [7] to detect implicit preference in human feedback in future
work to solve this limitation. Third, due to the limited number of
participants and their labeled data, we cannot evaluate the data
quality by training and evaluating the reward model. We plan to
conduct large-scale crowd-sourcing studies using FARPLS to collect
more preference data, evaluate the reward model by training and
testing the model on the collected data, and adopt the latest robot
task learning algorithms [71] to see the improvement of robot ma-
nipulation. Fourth, to ensure the fairness of the between-subjects
study, we kept the pool of trajectories for labeling the same for
the two conditions and had both groups annotate the entire pool.
Hence, we only included 30 trajectories in the pool – a small num-
ber compared to many existing robot trajectory datasets – so that
the length of the study sessions was reasonable. Also, we did not
use any selection strategies to reduce the number of trajectory
pairs to be labeled. Future work can incorporate active learning
[3], or semi-automatic labeling [24] approaches to reduce the users’
workload when more preference data need to be collected over a
bigger trajectory pool to train the reward model and evaluate the
improvement of the robot task learning.

8 CONCLUSION
This paper presents FARPLS, a feature-augmented system for robot
trajectory preference labeling. FARPLS is designed to help users
establish their criteria and compare the trajectories. Through a
formative study, we identified the criteria and features that users
care about when labeling the trajectories and the challenges they
face when labeling the trajectories. We then derive the design re-
quirements for FARPLS, generate a robot arm dataset, and build
a web application with dynamic prompting, adaptive display of
features and keyframes, and staged feedback. We conducted a com-
prehensive user study to evaluate the effectiveness of FARPLS in
improving the consistency of human labelers. The results show that
FARPLS can significantly improve human labelers’ consistency and
help labelers in more engaged preference elicitation. The results
also show that FARPLS can help users establish the criteria and
compare the trajectories with improved user engagement. We also
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discuss the generalizability and limitation of FARPLS and provide
design considerations for future work in improving the user ex-
perience, incorporating algorithmic assistance, and improving the
preference dataset for robot learning.
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A PICKPLACECANS FEATURE DEFINITIONS
Table 9 shows the formula for each feature as a time series and as a
scalar in a trajectory complementary to Table 2. We stack all feature
time series for each criterion to form a criterion vector series:

safety𝑖 (𝑡) = [ 𝑛𝑢𝑚_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑖 (𝑡), 𝑑𝑖𝑠_𝑡𝑜_𝑙𝑒 𝑓 𝑡𝑖 (𝑡),
𝑑𝑖𝑠_𝑡𝑜_𝑟𝑖𝑔ℎ𝑡𝑖 (𝑡), 𝑑𝑖𝑠_𝑡𝑜_𝑓 𝑟𝑜𝑛𝑡𝑖 (𝑡),
𝑑𝑖𝑠_𝑡𝑜_𝑏𝑎𝑐𝑘𝑖 (𝑡), 𝑑𝑖𝑠_𝑡𝑜_𝑡𝑎𝑏𝑙𝑒𝑖 (𝑡),
𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑓 𝑜𝑟𝑐𝑒𝑖 (𝑡) ];

efficiency𝑖 (𝑡) = [ 𝑠𝑝𝑒𝑒𝑑𝑖 (𝑡), 𝑒𝑒 𝑓 _𝑝𝑜𝑠𝑖 (𝑡),
𝑐𝑎𝑛_𝑝𝑜𝑠𝑖 (𝑡), 𝑝𝑠𝑒𝑢𝑑𝑜_𝑐𝑜𝑠𝑡𝑖 (𝑡) ];

task_quality𝑖 (𝑡) = [ 𝑠𝑝𝑒𝑒𝑑_𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠𝑖 (𝑡),
𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦_𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠𝑖 (𝑡),
𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑖 (𝑡), 𝑔𝑟𝑎𝑠𝑝_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 (𝑡) ];

which represent three criteria, Safety, Efficiency, and Task Quality,
for trajectory 𝑖 at 𝑡-th step.
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Table 9: Formula definitions for each feature as a time series and as a scalar in a trajectory. In the formulas, 𝑖 represents
the trajectory, 𝑠𝑖 denotes the total number of steps (i.e., the number of states) in trajectory 𝑖 and 𝑡 ∈ {0, 1, . . . , 𝑠𝑖 } denotes the
step-index in the trajectory series.

Feature Formula

Safety

Collision Time Series 𝑛𝑢𝑚_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠𝑖 (𝑡)
Scalar 𝑚𝑎𝑥_𝑛𝑢𝑚_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠𝑖 = max{𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑖 (𝑡)}𝑠𝑖𝑡=0

Distance (to
table edges)

Time Series 𝑑𝑖𝑠_𝑡𝑜_𝑙𝑒 𝑓 𝑡𝑖 (𝑡), 𝑑𝑖𝑠_𝑡𝑜_𝑟𝑖𝑔ℎ𝑡𝑖 (𝑡), 𝑑𝑖𝑠_𝑡𝑜_𝑓 𝑟𝑜𝑛𝑡𝑖 (𝑡), and 𝑑𝑖𝑠_𝑡𝑜_𝑏𝑎𝑐𝑘𝑖 (𝑡).
Scalar 𝑚𝑖𝑛_𝑑𝑖𝑠_𝑡𝑜_𝑒𝑑𝑔𝑒𝑖 = min {𝑑𝑖𝑠_𝑡𝑜_𝑙𝑒 𝑓 𝑡𝑖 (𝑡), 𝑑𝑖𝑠_𝑡𝑜_𝑟𝑖𝑔ℎ𝑡𝑖 (𝑡), 𝑑𝑖𝑠_𝑡𝑜_𝑓 𝑟𝑜𝑛𝑡𝑖 (𝑡), 𝑑𝑖𝑠_𝑡𝑜_𝑏𝑎𝑐𝑘𝑖 (𝑡)}𝑠𝑖𝑡=0

Distance (to
table surface)

Time Series 𝑑𝑖𝑠_𝑡𝑜_𝑡𝑎𝑏𝑙𝑒𝑖 (𝑡)
Scalar 𝑚𝑎𝑥_ℎ𝑒𝑖𝑔ℎ𝑡_𝑡𝑜_𝑡𝑎𝑏𝑙𝑒𝑖 = max {𝑑𝑖𝑠_𝑡𝑜_𝑡𝑎𝑏𝑙𝑒𝑖 (𝑡)}𝑠𝑖𝑡=0

Contact force Time Series 𝑒𝑒 𝑓 _𝑓 𝑜𝑟𝑐𝑒𝑖 (𝑡)
Scalar 𝑚𝑎𝑥_𝑒𝑒 𝑓 _𝑓 𝑜𝑟𝑐𝑒𝑖 = max{𝑒𝑒 𝑓 _𝑓 𝑜𝑟𝑐𝑒𝑖 (𝑡)}𝑠𝑖𝑡=0

Efficiency

Speed Time Series 𝑠𝑝𝑒𝑒𝑑𝑖 (𝑡)
Scalar 𝑎𝑣𝑔_𝑠𝑝𝑒𝑒𝑑𝑖 = 1

𝑠𝑖

∑𝑠𝑖
𝑡=0 𝑠𝑝𝑒𝑒𝑑𝑖 (𝑡)

Path Length

Time Series (1) 𝑒𝑒 𝑓 _𝑝𝑜𝑠𝑖 (𝑡)
Time Series (2) 𝑐𝑎𝑛_𝑝𝑜𝑠𝑖 (𝑡)
Scalar (1) 𝑟𝑒𝑎𝑐ℎ_𝑙𝑒𝑛𝑔𝑡ℎ𝑖 =

∑𝑠1𝑖
𝑡=1 |𝑒𝑒 𝑓 _𝑝𝑜𝑠𝑖 (𝑡) − 𝑒𝑒 𝑓 _𝑝𝑜𝑠𝑖 (𝑡 − 1) |

Scalar (2) 𝑔𝑟𝑎𝑠𝑝_𝑙𝑒𝑛𝑔𝑡ℎ𝑖 =
∑𝑠2𝑖
𝑡=𝑠1𝑖+1 |𝑒𝑒 𝑓 _𝑝𝑜𝑠𝑖 (𝑡) − 𝑒𝑒 𝑓 _𝑝𝑜𝑠𝑖 (𝑡 − 1) |

Scalar (3) 𝑔𝑟𝑎𝑠𝑝_𝑙𝑒𝑛𝑔𝑡ℎ𝑖 =
∑𝑠3𝑖
𝑡=𝑠1𝑖+1 |𝑒𝑒 𝑓 _𝑝𝑜𝑠𝑖 (𝑡) − 𝑒𝑒 𝑓 _𝑝𝑜𝑠𝑖 (𝑡 − 1) |

Time

Scalar 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒𝑖 (𝑡) = 𝑠𝑖
𝑓 𝑝𝑠

Keyframe (1) The step 𝑠1𝑖 that the end-effector gripped the can when picking up. (e.g., Figure 3e)

Keyframe (2) The step 𝑠2𝑖 that the end-effector releases the can when placing. (e.g., Figure 3f)

Power Usage
Time Series 𝑝𝑠𝑒𝑢𝑑𝑜_𝑐𝑜𝑠𝑡𝑖 (𝑡) =

∑𝑡
𝜏=0

∑𝑑𝑜𝑓

𝑗=1 |𝑞 𝑗 (𝜏) |

Scalar 𝑝𝑠𝑒𝑢𝑑𝑜_𝑐𝑜𝑠𝑡𝑖 =
∑𝑠𝑖
𝜏=0

∑𝑑𝑜𝑓

𝑗=1 |𝑞 𝑗 (𝜏) |

Task Quality

Speed
Smoothness

Time Series 𝑠𝑝𝑒𝑒𝑑_𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠𝑖 (𝑡) = 1
𝑡

∑𝑡
𝜏=0

√︁
a(𝜏)2

Scalar 𝑠𝑝𝑒𝑒𝑑_𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠𝑖 =
1
𝑠𝑖

∑𝑠𝑖
𝜏=0

√︁
a(𝜏)2

Trajectory
Smoothness

Time Series 𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦_𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠𝑖 (𝑡) = 1
𝑡

∑𝑡
𝜏=0 arccos

x(𝜏 ) ·x(𝜏+1)
|x(𝜏 ) | |x(𝜏+1) |

Scalar 𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦_𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠𝑖 (𝑡) = 1
𝑠𝑖

∑𝑠𝑖
𝜏=0 arccos

x(𝜏 ) ·x(𝜏+1)
|x(𝜏 ) | |x(𝜏+1) |

Orientation Time Series 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑖 (𝑡) = 𝑒𝑒 𝑓 _𝑜𝑟𝑖_𝑚𝑎𝑡𝑖 (𝑡)−1 ∗ 𝑐𝑎𝑛_𝑜𝑟𝑖_𝑚𝑎𝑡𝑖 (𝑡)
Grasp Position Time Series 𝑔𝑟𝑎𝑠𝑝_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 (𝑡) = 𝑐𝑎𝑛_𝑝𝑜𝑠𝑖 (𝑡) − 𝑒𝑒 𝑓 _𝑝𝑜𝑠𝑖 (𝑡)
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